Bootstrap Methods for the Nonparametric

نویسنده

  • Claudia Czado
چکیده

A completely nonparametric approach to population bioequivalence in crossover trials has been suggested by Munk and Czado (1999). It is based on the Mallows (1972) metric as a nonparametric distance measure which allows the comparison between the entire distribution functions of test and reference formulations. It was shown that a separation between carry-over and period eeects is not possible in the nonparametric setting. However when carry-over eeects can be excluded, treatment eeects can be assessed when period eeects are present or not. Munk and Czado (1999) proved bootstrap limit laws of the corresponding test statistics because estimation of the limiting variance of the test statistic is very cumbersome. The purpose of this paper is to investigate the small sample behavior of various bootstrap methods and to compare it with the asymptotic test obtained by estimation of the limiting variance. The percentile (PC) and bias corrected and accelerated (BCA) bootstrap were compared for multivariate normal and nonnormal populations. From the simulation results presented, the BCA bootstrap is found to be less conservative and provides higher power compared to the PC bootstrap, especially when skewed multivariate populations are present.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Statistical Topology Using the Nonparametric Density Estimation and Bootstrap Algorithm

This paper presents approximate confidence intervals for each function of parameters in a Banach space based on a bootstrap algorithm. We apply kernel density approach to estimate the persistence landscape. In addition, we evaluate the quality distribution function estimator of random variables using integrated mean square error (IMSE). The results of simulation studies show a significant impro...

متن کامل

Nonparametric Estimation of Spatial Risk for a Mean Nonstationary Random Field}

The common methods for spatial risk estimation are investigated for a stationary random field. Because of simplifying, lets distribution is known, and parametric variogram for the random field are considered. In this paper, we study a nonparametric spatial method for spatial risk. In this method, we model the random field trend by a local linear estimator, and through bias-corrected residuals, ...

متن کامل

The comparison of parametric and nonparametric bootstrap methods for reference interval computation in small sample size groups

According to the IFCC, to determine the population-based reference interval (RI) of a test, 120 reference individuals are required. However, for some age groups such as newborns and preterm babies, it is difficult to obtain enough reference individuals. In this study, we consider both parametric and nonparametric bootstrap methods for estimating RIs and the associated confidence intervals (CIs)...

متن کامل

Nonparametric Bootstrap for Quasi-Likelihood Ratio Tests∗

We introduce a nonparametric bootstrap approach for Quasi-Likelihood Ratio type tests of nonlinear restrictions. Our method applies to extremum estimators, such as quasimaximum likelihood and generalized method of moments estimators. Unlike existing parametric bootstrap procedures for Quasi-Likelihood Ratio type tests, our procedure constructs bootstrap samples in a fully nonparametric way. We ...

متن کامل

The Bootstrap Small Sample Properties

This report reviews several bootstrap methods with special emphasis on small sample properties. Only those bootstrap methods are covered which promise wide applicability. The small sample properties can be investigated analytically only in parametric bootstrap applications. Thus there is a strong emphasis on the latter although the bootstrap methods can be applied nonparametrically as well. The...

متن کامل

Functional Methods for Time Series Prediction: A Nonparametric Approach

The problem of prediction in time series using nonparametric functional techniques is considered. An extension of the local linear method to regression with functional explanatory variable is proposed. This forecasting method is compared with the functional Nadaraya–Watson method and with fi nitedimensional nonparametric predictors for several real-time series. Prediction intervals based on the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009